
Three-Dimensional Direct Particle Simulation On the

Connection Machine

Leonardo Dagum I

Report RNR-91-022, August 7, 1991

Presented at AIAA 26 th Thermophysics Conference, Honolulu, HI, paper

AIAA 91-1365.

NASA Ames Research Center

Moffett Field, CA 94035

August 7, 1991

Abstract

This paper presents the algorithms necessary for an efficient

data parallel implementation of a three dimensional particle simu-

lation. In particular, a general master�/slave algorithm and a fast

sorting algorithm are described and the use of these algorithms in

a particle simulation is outlined. A particle simulation using these

algorithms has been implemented on a 3_768 processor Connection

Machine that is capable of simulating over 30 million particles at an

average rate of e.4 ps/particle/step. Results are presented from the

simulation of flow over an Aeroassisted Flight Ezperiment (AFE}

geometry at I00 km altitude.

1The author is an employee of Computer Sciences Corporation, M.S. T045-1,
NASA Ames Research Center.



Three-Dimensional Direct Particle Simulation On the Connection

Machine

Leonardo Dagum 1

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035

Abstract

This paper presents the algorithms necessary for an

efficient data parallel implementation of a three di-

mensional particle simulation. In particular, a gen-

eral master/slave algorithm and a fast sorting algo-
rithm are described and the use of these algorithms

in a particle simulation is outlined. A particle simula-

tion using these algorithms has been implemented on a

32768 processor Connection Machine that is capable of

simulating over 30 million particles at an average rate

of e.4 #s/particle/step. Results are presented from the

simulation of flow over an Aeroassisted Flight Exper-

iment (AFE} geometry at 100 km altitude.

1 Introduction

Interest in analysing hypersonic flows has led to

great activity in the field of direct particle simula-
tion. Much of the current work has focused on design-

ing algorithms targeted specifically to vector architec-

tures in an attempt to improve the performance of this

method on vector machines [2, 6, 14, 15]. The results

from this effort have been rewarding, and it can be

said that the algorithms for implementing a fully vec-

torized particle simulation are well established. Not
as well established, however, are the algorithms nec-

essary for an efficient data parallel implementation of

a particle simulation. The current trend towards mas-
sively parallel architectures makes the investigation of

parallel algorithms for direct particle simulation both

appropriate and timely.

This paper describes the data parallel algorithms

necessary for the efficient implementation of a three di-

mensional particle simulation on the Connection Ma-

1Research Scientist, Member AIAA
Copyright (_)1991 by Leonardo Dagum. Published by the
American Institute of Aeronautics and Astronautics, Inc. with
permission.

chine. Results from a flow simulation for the Aeroas-

sisted Flight Experiment (AFE) geometry are pre-
sented.

2 Connection Machine Architecture

The Thinking Machines Connection Machine
Model CM-2 is a massively parallel single-instruction

multiple-data (SIMD) computer consisting of many
thousands of bit serial data processors under the di-

rection of a front end computer. The system at NASA

Ames consists of 32768 bit serial processors each with

1 Mbit of memory and operating at 7 Mhz. The pro-

cessors and memory are packaged as 16 to a chip. Each

chip also contains the routing circuitry which allows

any processor to send and receive messages from any

other processor in the system. In addition, there are
1024 64-bit Weitek floating point processors which are

fed from the bit serial processors through a special

purpose "Sprint" chip. There is one Sprint chip con-

necting every two CM chips to a Weitek. Each Weitek

processor can execute an add and a multiply each clock

cycle thus performing at 14 MFLOPS and yielding a

peak aggregate performance of 14 GFLOPS for the

system.
The Connection Machine can be viewed two ways,

either as an 11-dimensional hypercube connecting the

2048 CM chips or a 10-dimensional hypercube con-

necting the 1024 Weitek processing elements. The first
view is the "fieldwise" model of the machine which has

existed since its introduction. This view admits to the

existence of at least 32768 physical processors (when

using the whole machine) each storing data in fields

within its local memory. The second is the more recent
"slicewise" model of the machine which admits to only

1024 processing elements (when using the whole ma-

chine) each storing data in slices of 32 bits distributed

across the 32 physical processors in the processing el-

ement. Both models allow for "virtual processing",



wheretheresources of a single processor or processing

element may be divided to allow a greater number of

virtual processors (VP's).

Regardless of the machine model, the architecture
allows interprocessor communication to proceed in

three manners. For very general communication with

no regular pattern, the router determines the desti-
nation of messages at run time and directs the mes-

sages accordingly. This is referred to as general router
communication. For communication with an irregu-

lar but static pattern, the message paths may be pre-

compiled and the router will direct messages according
to the pre-compiled paths. This is referred to as com-

piled communication and is faster than general router
communication. Finally, for communication which is

perfectly regular and involves only shifts along grid
axes, the system software optimizes the data layout

by ensuring strictly nearest neighbor communication

and uses its own pre-compiled paths. This is referred

to as NEWS (for "NorthEastWestSouth") communi-

cation. Despite the name, NEWS communication is

not restricted to 2-dimensional grids, and up to 31-

dimensional NEWS grids may be specified. When pro-

cessors are prescribed by a NEWS grid it is possible

to efficiently perform scan operations [16] across a grid

axis. A scan operation with binary operator _ across

an ordered set Is0, al,..., an-l] returns the ordered

set Is0, (a0• • e-.. •

3 Implementation Details

Because of the SIMD nature of the Connection Ma-

chine, it is difficult to efficiently implement either the

"time counter" [3] or the "no time counter" [5] collision
selection rules of Bird's direct simulation Monte Carlo

(DSMC) method. For this reason Baganoff and Mc-
Donald's [2] collision selection rule has been applied,

and the algorithms of the Stanford particle simulation

method have been implemented.

A single time step in the particle simulation can be

considered comprised of six events:

1. Collisionless motion of particles.

2. Enforcement of boundary conditions.

3. Sorting of particles into cells.

4. Pairing of collision partners.

5. Collision of selected collision partners.

6. Sampling for macroscopic flow quantities.

Q

PHYSICAL SPACE

Q

@

paled for collision

COMPUTATIONAL SPACE

Figure 1: Mapping of particle data to virtual pro-
cessors in the Connection Machine. Each particle in

physical space is represented by one virtual processor
in computational space.

Detailed description of these algorithms may be found

in [13] and [8].

In the implementation, one virtual processor is as-

signed to each particle, therefore each physical proces-

sor is simulating a fixed and identical number of par-

ticles. Figure 1 illustrates the parallel decomposition

of the problem. The set of virtual processors (VP-set)

storing the particle data is referred to as the main
VP-set. Several other VP-sets are used in the simu-

lation and all the VP-sets are one-dimensional NEWS

grids. Note in figure 1 that particles occupying the
same cell in physical space are represented by neigh-

boring processors in computational space. When the

particles are ordered in this manner, cell boundaries
may be quickly determined by having every proces-

sor compare its particle's cell index with that of its

neighboring processor. Cell boundaries are often used

to delimit segments in scan operations. This conve-

nient ordering is lost when particles move into different
cells and the order must be restored by sorting. With

the particle data sorted it becomes a simple matter

to match pairs for collision as well as to sample for

macroscopic flow quantities. The algorithms used to

implement the six events comprising a time step are
described below.

3



3.1 Enforcing Boundary Conditions

The Stanford particle simulation method currently

employs a grid of cubic cells for deciding on collisions

and sampling macroscopic flow quantities. Arbitrary

three dimensional geometries are defined in the grid
of cells in the manner described in [13]. The geome-

try information is stored in a distinct VP-set, referred

to as the geometry VP-set, and is accessed through a

master/slave scheme similar to that described in [8].
The master/slave scheme is a way of allowing a

good load balance to persist in parts of the calcula-
tion which do not involve a large fraction of the parti-

cles. The enforcement of boundary conditions is such

an example. Typically only a small number of parti-

cles interact with the body on any given time step (for

example, in the application discussed below, less than
4% of the total number of particles need to be consid-

ered for possible surface interaction). Since the work

for each particle is being carried out by an individual

virtual processor, a straightforward application of the

boundary conditions would result in a large number of

VP's remaining idle with only a small number of VP's

actually involved in the calculation. However, assume
for now that without accessing the geometry VP-set

one knows which particles must must be considered

for possible surface interaction. In such a case it is
profitable to carry out the surface interaction with a

master/slave algorithm. In its general form, the mas-

ter/slave algorithm is as follows:

Master�Slave Algorithm:

1. In the master VP-set:

(a) Create a slave VP-set large enough to ac-
commodate all the particles to undergo the

action.

(b) Send the address of these particles to the
slave VP-set.

2. In the slave VP-set:

(a) Get the information necessary for the calcu-
lation from the master VP-set and any other

VP-sets.

(b) Perform the necessary calculation.

(c) Send the results back to the master VP-set.

3. In the master VP-set:

(a) Destroy the slave VP-set and free its mem-

ory.

Note that the master performs the minimum al-
lowable work and the slave initiates communication

wherever possible. The latter is especially important
because the execution time for communication across

VP-sets is not commutative when the VP-sets are of

different size.

In order to effectively use the master/slave algo-

rithm for enforcing boundary conditions it is neces-
sary to somehow identify which particles have entered

so-called "geometry" cells. These are cells for which a

boundary is defined in the geometry VP-set. It is not
practical to let the processors in the main VP-set di-

rectly access the data in the geometry VP-set because
of the enormous communication cost it would entail.

Instead, for every cell in the simulation there is stored

a 28-bit descriptor of the region local to the cell. The

first 27 bits of the descriptor map the cell itself and its

26 immediate neighbors, the last bit maps the region

comprised by the 98 cells that are two away. If a bit

in the descriptor has value 1, then the region it maps

(either a neighboring cell or group of cells) includes a

geometry cell. Conversely, if a bit has value 0 then the

region it maps does not include a geometry cell.

The local region descriptors are stored in a separate
VP-set which will be referred to as the space VP-set.

The space VP-set also stores, for every a cell, a pointer
to the appropriate address in the geometry VP-set.

At the beginning of every time step, descriptors are

broadcast to every processor in the main VP-set as
follows:

Broadcast Algorithm:

1. In the main VP-set, identify one processor for ev-

ery occupied cell.

2. Send the processor's self-address to the appropri-

ate processor in the space VP-set.

3. Processors in the space VP-set which receive a

message from the main VP-set return the local

region descriptor.

4. The local region descriptors received by the pro-

cessors active in Step 1 are copied with a scan op-

eration to the other processors representing par-
ticles in the same cell.

Note that the space VP-set is much smaller than

the main VP-set, therefore the principle behind the

work allocation in the master/slave algorithm applies.

Furthermore, note that at the beginning of the time

step the particle data in the main. VP-set is sorted,
therefore steps 1 and 4 can be carried out using NEWS
communication.



ProcessorsinthemainVP-setcannowupdatetheir
particle'sposition.At theendofthefreemotion,each
particle'scellpositionis computedandits localre-
giondescriptoris consulted.Thoseparticleswhich
mayneedto interactwith a bodysurfaceareidenti-
fiedandthemaster/slavealgorithmis applied.The
slaveprocessorsaccessthespaceVP-setto getpoint-
ersinto thethegeometryVP-setfromwhichtheycan
then retrievethe geometrydata. Becauseit is ex-
tremelyunlikelythat a particlemovemorethantwo
cellwidthsinonetimestep(see[13,8]),thelocalre-
giondescriptormapsneighboringcellsnofurtherthan
twoaway.

3.2 Sorting Particles and Pairing Colli-
sion Partners

When the particle data is sorted, neighboring vir-

tual processors in the main VP-set will store data for

particles occupying the same cell (except, of course,
at cell boundaries). Collision partners then may be

paired on an even-with-odd basis, that is, all even
numbered particles are considered for collision with

their odd numbered neighbor (see figure 1). Naturally

if the odd numbered neighbor is occupying a different

cell then the two particles are not allowed to collide.

At the beginning of a time step the particle data

is in an ordered state allowing easy access to the in-

formation for particles occupying the same cell. How-

ever, diffusion and convection of the particles through

a time step destroys the order, and it is necessary

to sort the particles on every time step. Sorting is

a communication intensive process and can be very

costly on a parallel architecture. However, knowledge
of the mechanism behind the disordering can be used

to greatly reduce this cost, and [9] describes a very ef-

ficient sorting algorithm for two dimensional particle
simulations. The extension of this algorithm to three
dimensions is described below. The changes made to

the algorithm should be carried back to the two di-
mensional case to improve the performance there as

well.
Three fundamental observations on the mechanism

behind the disordering may be used to reduce the

problem of sorting to one of merging. In particular,

one may observe:

1. At the beginning of a time step the particle data
is ordered and becomes disordered only through

the motion of the particles.

2. The range of motion of a particle over one time

step is, to a very high probability, limited to less
than two cell widths.

3. Most particles do not change cells over one time

step. Furthermore, of those particles which do
change cells, the majority make the same cell

change.

The first observation indicates that the data is never

very far out of order. Therefore it is reasonable to

expect that a specially tailored sorting algorithm may
be substantially faster than a general one. This ob-

servation implies that disorder occurs when particles

change cells. Trivially, if particles did not change cells
then they would remain sorted, but also if all particles

made the identical cell change then they would still re-

main sorted. All particles which undergo the same

cell change represent an ordered set, and one can di-

vide the particles into mutually exclusive sets based
on their cell change. The problem of sorting then be-

comes one of identifying and merging these ordered
sets. The next two observations aid in that respect.

The second observation indicates that there is a lim-

ited number of ordered sets to be identified. If parti-

cles move no more than two cell widths in a time step,

then there can only be 125 possible cell changes and
no more than 125 ordered sets to be found. In prac-

tice many of these will be empty sets and typically

only about 25 non-empty ordered sets will be found in
the data. For the two dimensional algorithm described

in [9] one proceeded simply to merge the non-empty
sets. Since in two dimensions there usually are only

9 sets to be merged this is sufficiently efficient. How-
ever with 25 non-empty sets the merging becomes too

costly, therefore one can make use of the third ob-
servation to reduce the number of sets to be merged.

This observation indicates that most of the particles

will belong to just two sets. The three-dimensional

sorting algorithm then proceeds as follows:

Flaz-sort

1. Identify the two largest ordered sets of particles
and enumerate them.

2. Sort the remaining particles using a master/slave

algorithm.

3. Merge the three ordered sets.

The enumeration in step 1 restarts at every cell

boundary. The sorting of step 2 is very fast because

only a small number of keys need to be sorted. The

merging used for step 3 is described in detail in [9].

Since only three sets need to be merged, the memory
and communication requirements for the merging are

less than for the two dimensional algorithm described

in [9]. Flux-sort will have about the same performance



ineitheratwodimensionalorathreedimensionalsim-
ulationandin bothcaseswill outperformthealgo-
rithmin [9]. Sincethescanoperationsusedin flux-
sortarevectorizable(see[7]),flux-sortshouldalsobe
consideredfor vectorarchitectureswhereit mayout-
performthepartiallyvectorizedbucketsortdescribed
in [6]. Finally,it is importantto notethat flux-sort
scaleslinearlywiththenumberofparticlesin thesim-
ulation.

3.3 Statistical Independence

For the simulation to accurately reflect the ex-

pected collision frequency in a gas, it is necessary that

the set of pairings considered for collision be statis-
tically independent between time steps. A straight-

forward approach toward ensuring such independence

would be to select pairs randomly from a cell. Unfor-

tunately, such a scheme does not readily lend itself to

implementation on a SIMD architecture like the Con-
nection Machine. The alternative approach is to em-

ploy a regular pairing (for example, the even-with-odd

pairing used here) but apply a shuffling of the in-cell

ordering prior to the pairing. The regular pairing al-

lows a regular communication pattern which leads to

a simple and efficient implementation. The difficulty

then is to find efficient algorithms for shuffling the in-

cell ordering. Two different shuffling algorithms are

employed every time step and these are described be-
low.

Shuffling occurs before the particle data has been
moved into its ordered arrangement. The following

assumes that each processor in the main VP-set is

storing its particle's in-cell number, ICi. The number-
ing for cell Ci has range [0, nc,) where nc, is the cell

density. The object is to shuffle this numbering such

that the order of particles within a cell is randomized.

Since it does not matter if neighboring cells are ran-

domized in the same fashion, it is feasible to apply a

single random permutation to the in-cell ordering of
all the cells in the simulation. Because permutation

of fixed length, P, must be applied to lists of vary-

ing length, the permutation is repeated within lists

of length greater than 2P and not applied to lists of

length less than P. The algorithm proceeds as follows:

Repeated Random Shuffle

1. On the front end, generate a random permuta-

tion pj where j has range [0, P). Applying P log P
random transpositions to an existing permutation

gu_.rantees independence between the two permu-

tations [1].

2. Select all processors representing particles occu-
pying cells with density nc, > P.

3. Compute a group number as gi = LICi/P].

4. In processors with gi < Lnc,/PJ, reassign in-cell
numbers as:

ICimode #-- giP+Pi forj = 0,...,P- 1

Note that the scale over which randomization has

occurred is fixed by P. If P is too small, then any large

scale mixing is inhibited. If P is too large, then too

many cells may be neglected. In practice the algorithm

is applied twice, once with a small value of P and once

with a large value of P (where 32 is considered large).
For very large scale mixing the algorithm suffers from

poor load balance. In particular step 4 requires P

reassignments each with no more than N/P processors

active (where N is the total number of particles).
To introduce mixing at the scale of the cell den-

sity a regular shuffling algorithm is employed. This

algorithm proceeds as follows:

Regular Shuffle

1. Divide the particles in a cell into k groups of size

G = lnc,/kJ and number the particles in each
group as gi = ICi rood G.

2. Within each group, reverse the even group num-
bers as:

gi *---- 2LG/2J - gi for i = 0,2,...,2LG/2 j

3. Reassign in-cell numbers as:

ICi *--- g, + GLICi/G] for i = 0,..., nc,

The mixing scale for this algorithm depends on the

selected value for k. In practice k alternately has value

1, 2, or 3 depending on the time step. Large scale

mixing is necessary because the merging used in the

flux-sort algorithm effectively ensures that particles

with the same characteristic bulk motion get grouped

together in the main VP-set (see [9]). This is a natural
outcome of making sets from particles which undergo

the same cell change, and without the regular shuffle

the even-with-odd pairing would result in collisions

primarily amongst particles belonging to the same set.

3.4 Colliding Particles

Collision mechanics are implemented as described

in [8]. Currently only single specie monatomic or di-
atomic gases may be simulated. Thermal nonequi-
iibrium between translational and rotational modes is



handled according to the Borgnakke-Larsen model de-

scribed in [13]. Vibrational relaxation also employs
the discrete model also described in [13]. Collision
numbers are fixed at 5 for rotation and 50 for vibra-

tion. Eventually multiple reacting species will be al-

lowed and it is expected that the vibration and chem-

istry models described in [12] will be implemented.

3.5 Sampling Macroscopic Flow Quanti-
ties

For diatomic gases 7 macroscopic quantities are

sampled. These include density, velocity, and three

temperatures. These quantities are computed in the
main VP-set for every occupied cell. Because the par-

ticles are sorted, scan operations may be used to com-

pute the necessary averages. The results are stored

in a separate sampling VP-set. A master/slave algo-

rithm (with the sampling VP-set acting as the slave) is

employed to transfer the sampled quantities from the
main VP-set. Samples are collected every time step

once steady state has been reached.

4 Validation

Validation of the implemented algorithms was un-

dertaken through test calculations for thermal relax-

ation of a gas, shock wave profiles, and shear stress

profiles in Couette flow. Figure 2 presents sample re-
sults from a shock wave simulation. The normalized

density and temperature profiles for a Mach 10 shock

wave in a perfect diatomic gas as computed by Mc-

Donald [13] are given by the solid curves. Position
along the profile is normalized by the mean free path
before the shock. The symbols represent results ob-

tained with the Connection Machine implementation

described here. The shock tube was three dimensional

with size 60 x 4 x 4.

The object in making this and other shock wave cal-
culations was to validate the shuffling algorithms for

the three dimensional simulation. Any statistical de-

pendence between pairings made on subsequent time

steps results in an incorrect collision frequency. Typ-

ically this will widen the shock profiles and prevent

thermal equilibrium from being reached behind the
shock. These effects were not observed and the shock

wave results compared favorably to accepted solutions.
Results from thermal relaxation simulations are given

in [8]; results from Couette flow simulations are given

in [101.

1.2

l

0.11

0.6

0.4

0.2

-6

- _--* _--__r__'. _

-4 -2 0 2 4

Nmmdiaed Dim

Figure 2: Normalized density and temperature profiles
across a Mach 10 shock wave in a perfect diatomic gas.

Symbols represent results from three dimensional sim-
ulation on the Connection Machine and lines represent

calculations made by McDonald [13]: -- p; - - - Ttr;

-.-.-. Tro$.

5 Calculations

To demonstrate the capabilities of the method the

results from a large scale three dimensional simulation

for the hypersonic flow about the Aeroassisted Flight

Experiment (AFE) vehicle are presented. The geom-
etry is identical to that described in [11]. The free
stream conditions corresponded to flight at 100 km

altitude where the mean free path is 10 cm and the

temperature is 194K. TheJKnudsen number based on
the 4.25 m aeroshell diameter is 0.0235.

The simulation geometry had a diameter of 44 cell

widths and the hard sphere free stream mean free path
was set at 1.035 cell widths in order to match Knudsen

numbers. For the assumed inverse ninth power law po-

tential, this required setting the simulation mean free

path to 0.854 as described in [4]. The free stream
Math number was 35.42 corresponding to a vehicle

velocity of 9.9 km/s. The surface temperature was
fixed at 1500K. The simulated particles corresponded

to molecular nitrogen with a characteristic tempera-
ture for vibration of 3390K.

The geometry was placed in a wind tunnel of dimen-
sions 55 x 120 x 60 and the simulation was started with

just 106 particles. As steady state was approached

particle cloning was used to bring the particle count

up to about 32 million. Averaging was then carried
out for 150 steps with samples collected on every step.

Figure 3 presents the temperatures along the stag-



300

25C

L

lSO

1
1

0
0 2 4 6 | I0 12 14 16 18 20

Nmmali_,dPmd_um

Figure 3: Normalized temperatures along the stagna-
tion streamline: -- Tt_; - - - T,.ot; --.--.--Toib. Position

is normalized by the free stream mean free path.

nation streamline normalized by the free stream tem-

perature. Unfortunately these results cannot be com-
pared to the the Cray implementation results pre-

sented in [11] because of a known error in boundary
conditions used in [11]. The peak normalized transla-

tional temperature of 266 corresponds to a 9% over-

shoot on the Rankine-Hugoniot jump value of 245 for

this Mach number in a perfect diatomic gas. The ro-

tational and vibrational temperatures lag behind the

translational temperature with peak values of 84 and

20 respectively. With a collision number of 50, vi-
brational modes are comparatively slower to activate

and greater vibrational temperatures are found down-

stream of the stagnation region.

Figures 4-7 present density and temperature con-

tours in the symmetry plane of the vehicle. The fig-

ures were generated from a single plane of the solution.

(Note that several planes could have been averaged to

produce smoother contours, but part of the purpose

in presenting these results is to demonstrate the qual-

ity of solution which can be obtained with 32 million

particles in 150 time steps.) Comparing the density

and translational temperature contours (figures 4 and

5), one can see the greater standoff distance for the

latter. The peak translational temperature occurs be-

fore the body and there is a sharp drop in temperature

on approaching the body owing to the cold surface

temperature. The rotational temperature (see figure

6) reaches its peak downstream from the stagnation

region, This is a result of the greater number of col-

lisions required to thermalize rotational modes in the

gas. Vibrational modes are slower yet to thermalize

120

100

80

60

4o

20

20 4o

Figure 4: Density contours in symmetry plane for flow
over AFE. Contours shown at 0.4, 0.8, 1.2, 5.0 and 20

times the free stream density.

and the peak vibrational temperature is not reached
until well downstream of the stagnation region (see fig-

ure 7). The subsequent expansion of the flow around
the shoulder of the vehicle lowers the collision rate

and the activated vibrational modes are frozen into

the wake. Figure 8 presents the velocity field in the

symmetry plane about the vehicle. The turning of the

flow about the body and the stagnant region directly
'behind the afterbody are Clearly evident.

6 Performance

The code used for the calculation described in the

previous section was written completely in C/Paris
and run on all 32k processors of the Connection Ma-

chine at NASA Ames Research Center using a Sun

4/90 as the front end. The average time to advance
one particle over one time step at steady state was

2.4 psec and the entire calculation was completed in
less than 6 hours. This performance is comparable

to that obtained from a fully vectorized implementa-

tion running on a single CPU of the Cray 2. However,

the greater amount of memory available on the CM

allows a greater number of particles to be simulated

(specifically, 32 million particles on a 32k processor
CM compared to 20 million particles on a Cray 2 with

2 GB of memory). It is expected that a fully config-



12 /

i
20 4O

Figure 5: Translational temperature contours in sym-

metry plane for flow over AFE. Contours shown at

10, 50, 100, 150, 200 and 250 times the free stream

temperature.

120

100

80

6O

4O

2O

Figure 7: Vibrational temperature contours in sym-

metry plane for flow over AFE. Contours shown at

2.0, 10, 20 and 30 times the free stream temperature.

120 [

100

80

6O

40

IO.

20

|

20 40

Figure 6: Rotational temperature contours in symme-

try plane for flow over AFE. Contours shown at 10,

50, and 100 times the free stream temperature.

80

7O

60

5O

30
20 3O 4O 50

Figure 8: Velocity field in symmetry plane around the

AFE.



move 20%

sort 38%

re-order 26%

collide 10%

sample 6%

Table 1: Distribution of computational time for par-
ticle simulation.

ured 64k processor CM would be capable of simulating

64 million particles at an average rate of 1.2 psec per

particle per time step.

The distribution of computational time in the code

is given in table 1. The fraction of time listed for sort-

ing includes the time to arrive at the rank for each

particle and the time to shuffle the in-cell ordering.
The "re-order" time is simply the time to permute

the particle data into its ordered arrangement. It is
this re-order time which makes the "collide" and "sam-

ple" times so low, since once the data is re-ordered the

memory references for these two events are primarily

local or nearest-neighbor. In a sequential implementa-

tion the re-ordering time would not appear explicitly

in this manner but would essentially be accounted for

in terms of memory references in the collide and sam-

ple events.

7 Discussion and Conclusions

The applicability of the current work to hyperveloc-

ity flow is somewhat limited since chemistry has not

yet been incorporated. However, although the sample
calculation of the previous section is physically mean-

ingless, the aim in presenting those results is not to

provide an accurate description of the real flow about
the AFE but rather to demonstrate the capacity of

the Connection Machine to execute large scale particle

simulations. It is expected that extending this work

to include multiple reacting species will not require

defining any new data parallel algorithms but may be

accomplished by applying the algorithms outlined in

the first part of this paper.

The results presented in this paper give some indi-

cation of the possibilities open to particle simulation

through distributed memory architectures. The low

computational cost per simulated particle of the Stan-

ford method makes memory the bounding resource as

opposed to CPU time. In this respect, distributed

memory architectures are ideally suited to particle
simulation since they are most capable of providing

extremely large memory capacities.

An important result of this investigation is a quan-
titative measure of the performance of the Connection

Machine for direct particle simulation. From this re-

sult it is possible to conclude that the massively par-
allel architecture of the Connection Machine is quite

suitable for this type of calculation with performance

comparable to that of a single processor Cray 2. The

main advantage of the Connection Machine is a large

memory which allows the simulation of over 30 mil-

lion particles. However, there are difficulties in taking

full advantage of this architecture because of the lack

of a broad based tradition of data parallel program-

ming. An important outcome of this work is new data

parallel algorithms specifically of use for direct parti-
cle simulation but which also expand the data parallel
diction.

Acknowledgements

The author would like to thank Jeff McDonald

for supplying shock profiles for comparison and Bill

Feiereisen for supplying the AFE geometry. This work

was sponsored under NASA contract NAS 2-12961.

References

[1] Aldous, D., Diaconis, P., Shuffling Cards

and Stopping Times, American Mathematical

Monthly, 93, 5, pps. 333-348, 1986.

[2] Baganoff, D., McDonald, J.D., A Colliswn-
Selection Rule for a Particle Simulation Method

Suited to Vector Computers, Phys Fluids A, 2, 7,

pps. 1248-1259, 1990.

[3] Bird, G.A., Molecular Gas Dynamics, Clarendon

Press, Oxford, 1976.

[4] Bird, G.A., Definition of Mean Free Path for Real
Gases, Phys Fluids, 26, 11, pp. 3222-3223, 1983.

[5] Bird, G.A., Perception of Numerical Methods in
Rarefied Gas Dynamics, Rarefied Gas Dynamics,

eds. E.D. Muntz, D.P. Weaver and D.H. Camp-

bell, Progress in Astro and Aero, 118, pps. 211-
226, 1989.

[6] Boyd, I.D., Vectorization of a Monte Carlo
Scheme for Nonequilibrium Gas Dynamzcs, Jour-

nal of Computational Physics, (to appear) 1991.

[7] Chatterjee, S., Blelloch, G.E., Zagha, M., Scan

Primitives for Vector Computers, Proceedings

Supercomputing '90, November 12-16, New York,
NY, 1990.

10



[8] Dagum, L., On the Suitability of the Connection
Machine for Direct Particle Simulation, Ph.D.
Thesis, Dept Aero and Astro, Stanford Univ,

Stanford, CA, 1990.

[9] Dagum, L., Sorting for Particle Flow Simulation
on the Connection Machine, In Horst D. Simon,

editor, Research Directions in Parallel CFD, MIT

Press, Cambridge (to appear), 1991.

[10] Dagum, L., Lip Leakage Flow Simulation for
the Gravity Probe B Gas Spinup Using PSiCM

NAS Applied Research Branch Report RNR-91-

010, 1991.

[11] Feiereisen, W., McDonald, ,I.D., Fallavoilita,
M.A., Three Dimensional Discrete Particle Sim-
ulation about the AFE Geometry, AIAA-90-1778,

1990.

[12] Haas, B.L., Thermochemistry Models Applicable
to a Vectorized Particle Simulation, Ph.D. The-

sis, Dept Aero and Astro, Stanford Univ, Stan-

ford, CA, 1990.

[13] McDonald, ,I.D., A Computationally Efficient
Particle Simulation Method Suited to Vector

Computer Architectures, Ph.D. Thesis, Dept
Aero and Astro, Stanford Univ, Stanford, CA,

1989.

[14] Ploss, H., On Simulation Methods for Solving the
Boltzmann Equation, Computing, 38, pps. 101-

115, 1987.

[15] Pryor, D.V., Burns, P.'I., Vectorized Monte
Carlo Molecular Aerodynamics Simulation of the

Rayleigh Problem, Journal of Supercornputing, 3,

4, pp. 305-330, 1989.

[16] Thinking Machines Corp., The Connection Ma-
chine System: Paris Reference Manual Version

5.0, Cambridge, MA, 1989.

11




